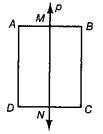

Practice 56 Supplementary Practice

Lessons 14-1 through 14-3

In Exercises 1–3, $f:x \to 3x + 8$.

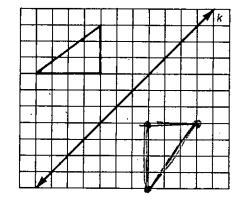
- 1. Find the image of -5. $\frac{}{}$
- 2. Find the preimage of 2.
- 3. Is f a one-to-one function? \bigcirc In the figure, $\bigcirc P$ is inscribed in square $\triangle BCD$.

- **4.** Describe a way of mapping each point of $\bigcirc P$ to a point of ABCDso that the mapping is one-to-one. For every of, X on OP, map X to x' on AB(1) where x'istheintersection of 5. Is the mapping an isometry?

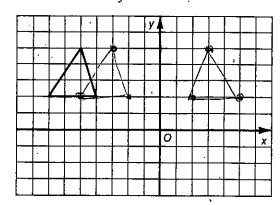


For the mapping $T:(x, y) \to (x + 3, y - 1)$, find the following.

- **6.** The image of (2, 1) (5, 0)
- 7. The image of (4, -2) (7, -3)
- 8. The preimage of (0,0) (-3,1)
- 9. The preimage of (5, -3)
- 10. Does T appear to be an isometry? ___


In the figure, line p is the perpendicular bisector of both \overline{AB} and \overline{DC} . Complete.

- 11. $R_p:\overline{AB} \to \underline{\beta}\underline{\beta}$ 12. $R_p:\overline{AM} \to \underline{\overline{\beta}}\underline{M}$ 13. $R_p:\underline{\overline{\beta}}\underline{C} \to \overline{AD}$ 14. $R_p:\underline{\underline{M}}\underline{N} \to \overline{MN}$

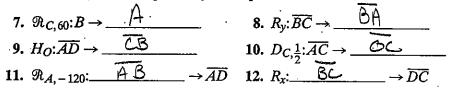


Draw the image of each figure by the transformation specified.

15. Reflection in line k

16. Glide 2 units to the right, followed by reflection in the y-axis

Practice 57

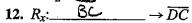

Some Basic Mappings

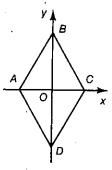
Lessons 14-1 through 14-5

Find the image of (-2, 4) under each transformation.

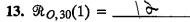
- 1. The translation $T: (x, y) \rightarrow (x 1, y + 3)$
- Reflection in the x-axis (-2, -4)
 Reflection in the y-axis (2, 4)
- 4. Reflection in the line y = x / 4 3
 - 5. $D_{0,\frac{1}{2}}$ $\left(-\frac{1}{2}\right)$
- 6. Glide-reflection: glide 3 units right, followed by reflection in the x-axis (1, -4)

 $\triangle ABC$ and $\triangle ADC$ are equilateral triangles. R_x and R_y are reflections in the x- and y-axes, respectively. Complete.

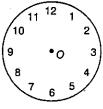


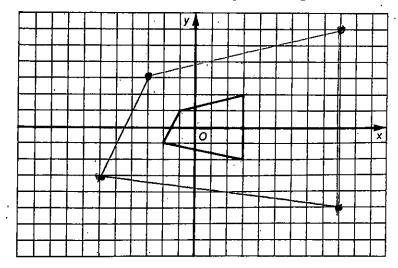

8.
$$R_y:\overline{BC}\to \underline{\overline{BA}}$$

9.
$$H_O:\overline{AD} \to \underline{\overline{CB}}$$


10.
$$D_{C,\frac{1}{2}}:\overline{AC}\to \underline{C}$$

11.
$$\Re_{A,-120}$$
: \overrightarrow{AB} $\rightarrow \overrightarrow{AD}$


The numbers 1 to 12 are equally spaced around the face of a clock. Find the number that is the image of each number under the following rotations.


13.
$$\Re_{O,30}(1) = \frac{1}{2}$$
14. $\Re_{O,90}(6) = \frac{3}{2}$
15. $\Re_{O,180}:8 \to \frac{2}{2}$
16. $\Re_{O,120}:10 \to \frac{6}{2}$

15.
$$\Re_{O,180}:8 \to 2$$

16.
$$\Re_{O,120}:10 \to \underline{\hspace{1cm}}$$

17. On the graph below, draw the image of the figure under the dilation $D_{O,3}$.

Transformations

For use after Chapter 14

B

Exs. 4-10

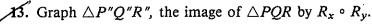
Exs. 11, 12

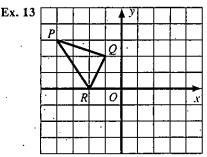
Exercises 1-3 refer to the function $f: x \to 2x^2 - 1$.

1. Find f(2). _______

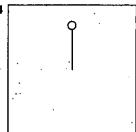
- 2. Find f(-2).
- · 3. Is f a one-to-one function? \bigcirc

Refer to the figure. In Exercise 6, k is the line y = x.


- 4. $R_{x}: A \to (5, -2)$ 6. $R_{k}: C \to (-4, -1)$
- 7. R_{B, 90}: C → A OR (5,2)


In Exercises 8-10 use the translation $T:(x, y) \rightarrow (x - 1, y + 3)$. Refer to the figure.

- 8. $T: A \to (4, 5)$ and $T: C \to (2, -1)$.
- 9. Find AC and A'C'. $AC = 6\sqrt{2}$ A'C' = $6\sqrt{2}$
- 10. Find the preimage of (3, 4). (4,1).
- 11. Find the coordinates of the image of Y by each dilation.
 - a. $D_{0,2}$ $\left(-4,4\right)$
- **b.** $D_{O_1} = \frac{1}{2} \left(\frac{1}{1} 1 \right)$
- 12. A glide reflection is described below. Graph $\triangle X' Y' Z'$, the image of $\triangle XYZ$ under the glide. Also graph $\triangle X''Y''Z''$, the image of $\triangle X'Y'Z'$ under the reflection.


Glide: All points move right 3 units.

Reflection: All points are reflected in the line y = x.

4. Complete the figure at the right above so that it has 90°, 180°, and 270° rotational symmetry. How many lines of symmetry

does the completed figure have? __

15. If $S:(x, y) \to (x - 1, y + 2)$, then $S^{-1}:(x, y) \to (x - 1, y + 2)$ and $S^{-1} \circ S : (x, y) \rightarrow$

Practice 59 Chapter 14 Practice

In Exercises 1–4 use the mapping $T:(x, y) \to (2x, y - 4)$.

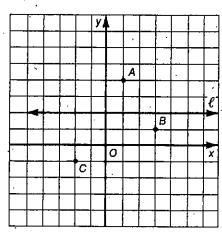
- 1. What is the image of (2, 3)? (4, -1)
- 2. What is the preimage of (-8, 2)? (-4, 4)
- 3. Does T appear to be an isometry? $\underline{\hspace{0.2cm}} \bigcirc \mathcal{O}$
- The rule for T^{-1} is $T^{-1}:(x,y) \to \underline{\hspace{1cm}}$

In Exercises 5-12, find the coordinates of each image point.

5.
$$R_x:(1,4) \rightarrow \underbrace{\left(\begin{array}{c} - U \\ \end{array} \right)}$$

6.
$$R_y:(3,1) \to \frac{(-3)^{-1}}{(1)^{-1}}$$

7.
$$R_{i}(-2, -1) \rightarrow (-2, 5)$$


8.
$$D_{0,2}:(-2,-1) \to (-4,-2)$$

9.
$$H_0:(1,4) \to (-1,-4)$$

10.
$$R_l \circ R_x : (-2, -1) \to$$

$$\checkmark$$
1. $R_{y} \circ H_{O}: (-2, -1) \rightarrow \underline{\hspace{1cm}}$

12.
$$R_l \circ D_{O,2}:(3,1) \to \underline{\hspace{1cm}}$$

Exs. 5-12

Tell whether the regular hexagon shown below has the following symmetries.

- 13. Point symmetry _____
- 14. Line symmetry _____
- 15. 90° rotational symmetry


Exercises 16-21 refer to regular hexagon GHIDEF.

16.
$$\Re_{O,120}(G) =$$
 $\boxed{ }$ $=$ $\boxed{ }$ $=$

17.
$$\Re_{O,180}(I) =$$

26.
$$\Re_{O,60} \circ H_O:E \to$$

$$\mathcal{M}. \ \mathfrak{R}_{O,120} \circ \mathfrak{R}_{O,240}:D \rightarrow \underline{\hspace{1cm}}$$

Exs. 13-21