Perpendicular Lines; Planning a Proof

For use after Section 2-6

In the diagram, $\overrightarrow{AE} \perp \overrightarrow{FC}$ and $\overrightarrow{FB} \perp \overrightarrow{FD}$. Find the measures of the following angles.

- 1. LBFD <u>90</u>
- 2. LCFE 90
- 3. $m \angle AFB = 55$; $m \angle BFC = _$
- 4. $m \angle CFD = 42$; $m \angle DFE = _$

Exs. 1-11

Write or name the definition or theorem that justifies the statement about the diagram above.

- 5. If $\overrightarrow{AE} \perp \overrightarrow{FC}$, then $\angle AFC \cong \angle EFC$. $\bot | inos \rightarrow \cong Ooli, \angle C$
- 6. If $\overrightarrow{FB} \perp \overrightarrow{FD}$, then $\angle BFD$ is a right angle. $\triangle 0 + 1$
- 7. If $\angle BFC$ and $\angle CFD$ are complementary, then $m \angle BFC + m \angle CFD = 90.$
- 8. If $m \angle AFB + m \angle EFB = 180$, then $\angle AFB$ and $\angle EFB$ are supplementary. And supp
- 9. If $\angle BFD$ is a right angle, then $\overrightarrow{FB} \perp \overrightarrow{FD}$.
- 10. If $\angle EFC$ is a right angle, then $m\angle EFC = 90$.
- 11. If $\angle AFC \cong \angle CFE$, then \overrightarrow{CF} and \overrightarrow{AE} are perpendicular. Two toom \cong

Supply the statements or reasons needed to complete the proof.

12. Given: $\overrightarrow{CD} \perp \overrightarrow{AB}$: $\angle 1 \cong \angle 4$

Prove: $\angle 2 \cong \angle 3$

Proof:

Statements

- 1. $\overrightarrow{CD} \perp \overrightarrow{AB}$
- 2. $\angle 1$ and $\angle 2$ are complementary: $\angle 3$ and $\angle 4$ are complementary.
- 4. ∠2 ≅ ∠3

Reasons

- 3. Given