Practice 5

Using Deductive Reasoning

Lessons 2-1 through 2-3

In Exercises 1 and 2, underline the hypothesis once and the conclusion twice.

- 1. If \overrightarrow{AB} intersects \overrightarrow{CD} at X, then A, X, and C are coplanar.
- 2. I can ride my bicycle if I finish my homework.
- 3. Classify the given statement as true or false. Then write the converse of the statement and classify the converse as true or false.

If AM = MB, then M is the midpoint of \overline{AB} .

If M is modal of AB, then AM=MB

Justify each statement with a property of equality or congruence.

4. If
$$\angle 1 \cong \angle 2$$
 and $\angle 2 \cong \angle 3$, then $\angle 1 \cong \angle 3$. ICONS.

6. If
$$x + y = 7$$
 and $y = z$, then $x + z = 7$. Sub 34.

7. If
$$m \angle 1 = m \angle 5$$
, then $m \angle 5 = m \angle 1$. Summ.

8. If
$$m \angle 1 = m \angle 2$$
, then $m \angle 1 + m \angle 3 = m \angle 2 + m \angle 3$. Add $0 \otimes 0$.

In Exercises 9-13, name the definition, postulate, or theorem that justifies the statement about the diagram.

9. If \overrightarrow{GK} is the bisector of $\angle FGJ$, then $m \angle 3 = \frac{1}{2}m \angle FGJ$.

LBis Thmi

11. $m \angle 1 + m \angle 2 = 180$

12. If K is the midpoint of \overline{FJ} , then $FK = \frac{1}{2}FJ$.

Given: $\angle ABC \cong \angle EFG$; \overrightarrow{BD} bisects $\angle ABC$: \overrightarrow{FH} bisects $\angle EFG$.

Prove: $\angle DBC \cong \angle HFG$

Exs. 9-13

Reasons

1. $\angle ABC \cong \angle EFG$ or $m \angle ABC = m \angle EFG$

1.
$$\angle ABC \equiv \angle EFG \text{ of } m \angle ABC = m \angle EFG$$

2. $\frac{1}{2}m \angle ABC = \frac{1}{2}m \angle EFG$

3.
$$\overrightarrow{BD}$$
 bisects $\angle ABC$; \overrightarrow{FH} bisects $\angle EFG$.

4.
$$m \angle DBC = \frac{1}{2}m \angle ABC$$
; $m \angle HFG = \frac{1}{2}m \angle EFG$

5.
$$m \angle DBC = m \angle HFG$$
 or $\angle DBC \cong \angle HFG$

