Practice 5 ## Using Deductive Reasoning Lessons 2-1 through 2-3 In Exercises 1 and 2, underline the hypothesis once and the conclusion twice. - 1. If \overrightarrow{AB} intersects \overrightarrow{CD} at X, then A, X, and C are coplanar. - 2. I can ride my bicycle if I finish my homework. - 3. Classify the given statement as true or false. Then write the converse of the statement and classify the converse as true or false. If AM = MB, then M is the midpoint of \overline{AB} . If M is modal of AB, then AM=MB Justify each statement with a property of equality or congruence. 4. If $$\angle 1 \cong \angle 2$$ and $\angle 2 \cong \angle 3$, then $\angle 1 \cong \angle 3$. ICONS. 6. If $$x + y = 7$$ and $y = z$, then $x + z = 7$. Sub 34. 7. If $$m \angle 1 = m \angle 5$$, then $m \angle 5 = m \angle 1$. Summ. 8. If $$m \angle 1 = m \angle 2$$, then $m \angle 1 + m \angle 3 = m \angle 2 + m \angle 3$. Add $0 \otimes 0$. In Exercises 9-13, name the definition, postulate, or theorem that justifies the statement about the diagram. 9. If \overrightarrow{GK} is the bisector of $\angle FGJ$, then $m \angle 3 = \frac{1}{2}m \angle FGJ$. LBis Thmi 11. $m \angle 1 + m \angle 2 = 180$ 12. If K is the midpoint of \overline{FJ} , then $FK = \frac{1}{2}FJ$. Given: $\angle ABC \cong \angle EFG$; \overrightarrow{BD} bisects $\angle ABC$: \overrightarrow{FH} bisects $\angle EFG$. Prove: $\angle DBC \cong \angle HFG$ Exs. 9-13 ## Reasons 1. $\angle ABC \cong \angle EFG$ or $m \angle ABC = m \angle EFG$ 1. $$\angle ABC \equiv \angle EFG \text{ of } m \angle ABC = m \angle EFG$$ 2. $\frac{1}{2}m \angle ABC = \frac{1}{2}m \angle EFG$ 3. $$\overrightarrow{BD}$$ bisects $\angle ABC$; \overrightarrow{FH} bisects $\angle EFG$. 4. $$m \angle DBC = \frac{1}{2}m \angle ABC$$; $m \angle HFG = \frac{1}{2}m \angle EFG$ 5. $$m \angle DBC = m \angle HFG$$ or $\angle DBC \cong \angle HFG$