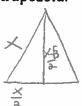
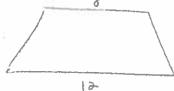

H. Geometry 11.1-11.4 Review


- 1. The measure of the bases of a trapezoid are 4 inches and 14 inches. If the altitude is $4\sqrt{3}$ inches, then find
 - (a) The area of the trapezoid

$$A = \frac{1}{2} (4\sqrt{3})(4+14)$$

$$A = \frac{3}{4}(4\sqrt{3})(4+14)$$

(b) The measure of the side of an equilateral triangle whose area is equal to the area of the trapezoid.


$$36\sqrt{3} = \frac{1}{2} \left(X \right) \left(\frac{X\sqrt{3}}{2} \right)$$

$$36\sqrt{3} = \frac{X^{2}\sqrt{3}}{4}$$

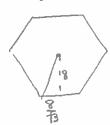
$$144\sqrt{3} = x^{2}\sqrt{3}$$

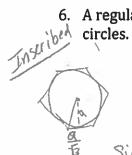
$$144\sqrt{3} = x^{2}$$

2. The lengths of the bases of a trapezoid are 12 and 8 inches and the area of the trapezoid is 70 square inches. Find the length of the trapezoid's altitude and median.

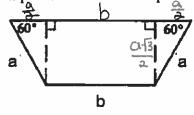
$$70 = \frac{1}{2}(h)(12+8)$$
 $7 = h$


3. A square and a rectangle have the same area. If a side of the square measures 18 inches and the base of the rectangle measures 6 inches, what is the width of the rectangle?




4. If the perimeter of a rhombus is 40 and the measure of one diagonal is 16, find the area of rhombus.

6. A regular hexagon has an area of $36\sqrt{3}$ cm². Find the radius of inscribed and circumscribed (iccumsc)



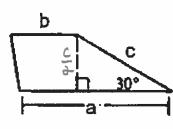
$$36\sqrt{3} = \frac{1}{2}(a)(4a\sqrt{3})$$

 $36\sqrt{3} = 2a^2\sqrt{3}$
 $18 = a^2$
 $3\sqrt{3} = a = 0$

$$36\sqrt{3} = \frac{1}{2}(a)(4a\sqrt{3})$$

 $36\sqrt{3} = 2a^2\sqrt{3}$
 $18 = a^2$
 $36\sqrt{3} = 2a^2\sqrt{3}$
Side = $\frac{2a}{\sqrt{3}} \rightarrow p = 12d = 4a\sqrt{3}$

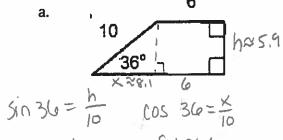
2(3-52)=


Express the area of trapezoid in terms of a and b.

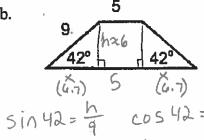
$$A = \frac{1}{a} \left(\frac{a+3}{a} \right) \left(b + b + \frac{2a}{a} \right)$$

$$A = \frac{a+3}{4}(ab+a)$$
 $A = \frac{a+3}{4}(ab+a)$
 $A = \frac{a+3}{4}(ab+a)$
 $A = \frac{a+3}{4}(ab+a)$
 $A = \frac{a+3}{4}(ab+a)$
 $A = \frac{a+3}{4}(ab+a)$

8. Express the area of trapezoid in terms of a, b, and c.


$$A = \frac{1}{a} \left(\frac{c}{a} \right) \left(b + a \right)$$

$$A = \left(\frac{c}{4}\right)(b+a)$$


$$A = \frac{Cb + Ca}{4}$$

9. Find the area of each trapezoid.

a.

b.

$$\sin 42 = \frac{h}{9} \cos 42 = \frac{\times}{9}$$

 $6 \approx h$ $6.7 \approx \times$

$$A = \frac{1}{4}(6)(5 + 5 + 2(4.7)) = \boxed{70.2}$$